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Abstract. We present an overview of existing theories on contextual judgement/utility

situating them within a general framework. We consider the extent to which they are

empirically distinguishable and apply them to some well-known economic questions such

as the relation of happiness and the income distribution, status races and quitting.
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1. Introduction

Theories of ‘contextual judgement’ first arose in psychology to explain evaluations of

physical stimuli (weights, sizes, numbers etc). It was found that the value assigned to a

particular stimulus depended, not simply on its own attributes, but also on those of the

other stimuli in the ‘context set’.1

It is is natural to extend this idea of ‘contextual judgement’ to economic and/or hedonic

quantities such as income and job satisfaction as well as to overall well-being (utility). In

these cases, ‘contextual’ means that an individual’s evaluation of, say, their income will

be determined, in part, by the incomes of those around them.

From this brief description, it should already be clear that theories of contextual judge-

ment share similarities with those of interdependent preferences (Sobel, 2005) as well as a

close connection with models of relative utility (Frank, 1985; Bordley, 1986; Frank, 1989;

Clark and Oswald, 1998; Hopkins and Kornienko, 2004, 2007). We shall return to these

connections in greater detail below.
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bridge. Email: rp240@cam.ac.uk or rufus@rufuspollock.org. This paper is licensed under Creative Com-
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1Parducci (1965); Parducci and Perrett (1971)
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The paper is organized as follows. In the first section, we introduce some standard

terminology and definitions. We follow this, in the second section, with some concrete

examples of situations where a contextual approach is valuable. The third section then

introduces the theory itself. Here, in addition to providing a general discussion we outline

the main contextual theories in use. With the theory in place, in the fourth section

we discuss briefly its implications for empirical work, particularly the ways in which we

can test for the existence of contextual effects and compare different theories. Last we

apply the models to some specific cases such as the relationship of reported happiness and

income.

2. Terminology and Definitions

There is some outcome variable x, for example income, consumption, job-satisfaction

etc (more examples and details are presented in the next section – if it would help to have

a concrete example in mind the reader may wish to look ahead briefly now).

For simplicity, we take x to be scalar valued and lie on the real line but the following

can be adapted to more general cases without difficulty. Take a particular agent i and let

xi be the associated outcome. Consider a context set C consisting of other outcomes of

the same type but achieved by ‘others’ (‘others’ may either be other entities or the same

entity at a different point in time).2

It will often be convenient to convert the context set to a probability distribution in the

following manner. First, recall that C contains members which are real-valued and that

C is discrete and finite. We may therefore define the probability assigned to an outcome

as the number of times it occurs divided by the total number of outcomes. This gives us a

discrete probability distribution. It is useful to go beyond this to consider the case where

C is non-finite (e.g. continuous) as this is mathematically more tractable and will usually

represent a good approximation if C is large. In this case C may be taken as represented

by some density function on the real line. With little loss of generality for the problems

we are considering we may assume that this density is normalizable and corresponds to

some Lesbegue measurable function. Thus, corresponding to any context set C we have a

2It is notationally convenient to include in the context set C the outcome being evaluated. In the case
where the context set is large this will clearly have little impact but when the context set is small this
might no longer be so.
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cumulative distribution function F – and given any F we can interpret it as representing

some context set C. Thus, in what follows we shall often use C and F interchangeably.

With this equivalence in place we may now define:

Definition 1. The judgement of xi, given context set C, is provided by the real-valued

judgement function: J = J(x,C). Formally a judgement function is a mapping:

J : R× F→ R

Where F is the set of probability distributions on R.

In reality the actual judgement (J) is not available to others as it is a subjective ex-

perience. Rather the judgement is presented to the outside world in the form of some

explicit category (verbal or otherwise), or, implicitly, in its role of informing some choice

process. The question of how observed categorizations or choices relates to the underlying

experience or judgement is clearly of some importance and we return to it below. For the

time being, however, we shall assume that the relationship is known and invertible and

hence we may proceed as if the judgement is itself observable.

In theory, C (and J) could vary with outcomes. However, we shall always assume that

a J and C can be chosen so that they are common across outcomes.3 In particular, for

any outcome in C, the context set of this outcome is also (a subset of) C.4 We shall refer

to context sets which have this property as coherent. This permits us to consider average

judgement:

Definition 2. The average or total judgement of a set of outcomes which form a coherent

context set is (recall that F is the density function associated to C):

J(C) = J̄(C) =
∫
J(x, F )dF (x)

In some circumstances the focus is on the evaluation of a set of experiences (i.e. the

context set itself) and we do not know the evaluation of individual ‘stimuli’ within that

3Formally this means J may be decomposed into a function: H : F → G where G in turn is the set of
functions: R→ R so that J(x,C) = J(x, F ) = H(F )(x).
4The subset point is important. For example, in the case where the outcomes are temporally ordered,
say the incomes of a given individual over time, the evaluation of any outcome may have as its (relevant)
context set only those outcomes which occurred previously.
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whole. In that case J(C) may be defined directly as a function of C rather than being

defined by some form of averaging.

As it stands the definition of a contextual judgement allows for a situation in which

the context does not matter, i.e. J(x,C) = g(x) for some function g. Such judgement

functions will not be of great interest to us. This motivates the following definition:

Definition 3. A judgement function J is:

• ‘pure self’ (or self-only) if J(x,C) = g(x) for some function g (and all C).

• ‘contextual’ if it is not ‘pure self’.

Thus, in this paper, the restriction just discussed can be rephrased as the fact that we

will concern ourselves only with the case of ‘contextual’ judgement functions. Our next

step is to name some particular important restrictions on contextual judgement functions.

Definition 4. A judgement function J is:

• ‘pure’ contextual if a positive shift in all values has no impact on judgement:

J(x + k,C + k) = J(x,C) (where C + k denotes the set of outcomes which have

all increased by k).

• ‘separable’ if the judgement is linearly separable into pure self and pure contextual

components: J(x,C) = g(x) + j(x,C) (where j is pure contextual).

• ‘rank based, or (pure) relative’ if the judgement function depends only on relative

(rank) position in the context set: J(x,C) = g(RC(x)) for some function g and

RC(x) being the rank of x within the set C (normalized to be between 0 and 1).

Remark 5. The definition of ‘pure’ contextual functions was based on stability under

transformation. It is useful to formalize the idea a little. Suppose we have an invertible

function h then hC or h(C) denotes the context set under translation by h, that is h(C)

is the new set in which each of the elements is transformed by h. In terms of F this

corresponds to a translation of the distribution function by h, that is if F is the distribution

function the new distribution function is F · h−1. We shall say a judgement function,

J is stable under the transformation h if, for all outcomes, x, in the context set C:

J(h(x), h(C)) = J(h(x), F · h−1) = J(x,C). With this definition, a ‘pure’ contextual

judgement function is one that is stable under translation.
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Remark 6. The ‘pure’ contextual case encapsulates that in which judgement is ‘relative’.

However, we have reserved the term relative for the case in which judgement is purely based

on rank order. As we shall see below, there are ‘pure’ contextual judgement functions which

are not ‘rank based’.

Remark 7. As it will figure prominently in what follows it is useful to be precise about

the rank of a variable in a set. First, supposing the set is finite, the unnormalized rank of

an item is simply the position (based at zero) in which that item appears in the set when

it is ordered from smallest to largest (with ties dealt with by averaging). The normalized

ranking, which is more relevant for our purposes, is obtained from the representation

of the context set as a distribution F . In this case, the rank R(x) of a value x equals

F (x) − F (x)−F (x−

2 where F (x−) = limx′→−xF (x′).5 The second-term corrects for what

occurs when there are mass points. Where the distribution has no mass-points (i.e. is

continuous and has continuous pdf) the second term disappears and the rank equates to

F (x). For the sake of simplicity, in what follows, we shall almost always assume that this

is the case, and therefore that rank equates exactly to position in the distribution F (x).

3. Example Applications

The use of a contextual judgement approach is natural in any situation where a con-

text/reference set influences a decision-maker. Here we discuss various concrete real-world

examples where this might be so. In each cases we identify:

(1) The item about which a judgement is being formed.

(2) The context set for the formation of this judgement.

It is also worth commenting briefly on the interpretation of the ‘judgement’ itself. For

economists, one of the most natural applications of the contextual framework judgement

is when judgement equates to utility or well-being.6

With this interpretation, the contextual judgement framework, in its general form, is

essentially identical to the case of interdependent preferences.7 However, as illustrated by

5In the discrete case this particular formulation results in the rank lying between pmin/2 and 1− pmax/2
where pmin, pmax are the probabilities of the minimum and maximum values respectively.
6Of course, it can be objected that the judgement is distinct from the underlying experienced utility.
However, such ‘underlying’ experience is almost never observed and for the choices we do observe it it will
be the ‘judgement’ which is the operational quantity and not the underlying utility. We therefore lose
nothing by equating the two variables. See Clark et al. (2008) for further discussion on this point.
7See Sobel (2005) for a detailed review.
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the examples below, while utility/well-being is one obvious and natural interpretation it is

not the only one. For example, the judgement could be a narrower measure of ‘satisfaction’,

such as that related to a job or a particular environment or it can even be taken to be

a direct monetary (or prestige) payoff in the case of explicit races such as those involved

in sport or research. Furthermore, the focus of interdependent preference is often rather

different from that found here – for example, fairness and reciprocity figure prominently.

3.1. Income and Well-Being.

• The outcome is income.

• The context set are the incomes of others.

• Judgement is reported utility or well-being.

Note that there is flexibility in the definition of the context set. For example, it could

be one’s work colleagues, one’s peers, one’s neighbours (Luttmer, 2005), all members of

society or even members other societies.

3.2. Status Races (and Patent Races). The classic status race case, as studied by e.g.

Frank (1985); Hopkins and Kornienko (2004), corresponds to:

• The outcome is (visible) consumption or income.

• The context set are the consumption or incomes of others.

• Judgement corresponds to ‘status’ and is ‘pure relative’ or ‘rank-based’, i.e. derived

from the outcome via a rank-based function.

The patent race case, studied by e.g. Loury (1979); Dasgupta and Stiglitz (1980),

corresponds to:

• The outcome is research expenditure.

• The context set are the research expenditure of other participants.

• ‘Judgement’ corresponds to the payoff from participation which in the standard

cases take the simple form of a patent worth V to the winner and zero to everyone

else. Formally, take h as the ‘hazard’ function connecting expenditure to rank and

R as the rank function. Then J(x,C) = g(R(h(x))) where g(1) = V and is 0

otherwise – i.e. the winner gets V and everyone else receives 0.
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Note that it is easy to generalize this last case to more complex payoffs as a function of

rank. For example, most sporting competitions award prizes to those in second and third

places as well as to those who come first.

3.3. Self-Comparison.

• Outcome is any relevant value (subjective well-being/happiness, satisfaction with

work, income, leisure etc).

• Context set is set of own outcomes in previous periods rather than outcomes of

others.

For example, Loewenstein and Sicherman (1991) examines preferences for different wage

profiles (sequences of wages). They find that increasing wage profiles were preferred to

decreasing ones even though the latter delivered a higher present value – a result which

obviously does not fit with traditional theory but which can be accommodated within the

contextual framework (if the present outcome is compared against outcomes up until the

present and increasing profile ensures that the present outcome is always at the top end

of the context set).

Loewenstein and Prelec (1993) looks at a more general case of preferences for particular

sequences of outcomes (for example, meals at different types of restaurant or scheduling a

good and a bad experience) and again find that placing outcomes within a defined sequence

(for us ‘context’) affects preferences for those outcomes.8 While the interpretation of these

results in the paper focus on a specific model based on reference and anticipated utility, a

contextual judgement/utility approach is also a natural fit.

3.4. Evaluation of Pain.

• Outcome is current level of pain.

• Context set is pain experienced within the current reference frame.

• Evaluation of experience is based on total judgement of the entire context set.

This example was motivated by Redelmeier and Kahneman (1996); Redelmeier et al.

(2003), which investigate patients’ evaluation of colonoscopy and lithotripsy procedures.

8In one case (unpleasant aunt, nice colleagues example) they also show how the temporal proximity of
the outcomes affects whether they are evaluated together, as part of the same ‘sequence’ (context), or
separately.
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They found that the patients overall evaluation of the experience was better fit by a ‘peak-

end’ rule than by a simple averaging of the reported ‘moment-to-moment’ level of pain.

In our notation J(C) is function of the ‘peak’ outcome, max(C), and the most recent

outcome, xT : J(C) = g(max(C), xT ) (in the classic case g is a simple average). However,

as we shall discuss further below, other well-known judgement rules may also provide a

good fit of this data.

3.5. Job Satisfaction and Quitting.

• Outcome = Current period value.

• Context Set (C) = job satisfaction in previous periods (or alternatively other

associated factors such as wage).

• Quitting then either based on total judgement of C as a whole or on judgement of

current outcome in context of C.

This example was inspired by Clark and Georgellis (2004) who investigate the result of

applying a ‘peak-end’ rule to quitting a job.

3.6. Evaluation of a Product.

• Outcome = Rating of a product (or a product bundle)

• Context Set (C) = Other products (or product bundles) that are available

This example would imply a generalization of the standard theory of consumer choice

in that the utility (judgement) of a consumption bundle would depend, not only on the

characteristics of that bundle itself, but on the other options available. In the case of a

single product there is a direct connection to the large literature on ‘framing’ which finds

that the context in which a given product is evaluated, in particular the other set of goods

within the consumer’s comparison set at that moment, can have a large impact on choice.

4. Theory

As set out so far the theory of contextual judgement is very general – probably too

general in that it will place no testable restrictions on the data.9 Thus, our first step

should be to ask what kind of restrictions we should introduce if we are to derive empirically

testable (and useful) predictions. It is also crucial to remember that the addition of almost

9See Kubler (2004) for the problems of testing dynamic models of intertemporal choice even in the case
when preferences are more restricted than here.
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any variable to a model will improve its fit with data. We must therefore always be

asking whether the additional variables that a contextual theory requires deliver sufficient

additional explanatory power to warrant their inclusion.

First, recall that associated with any context set we have a cumulative distribution

function F . Since C defines F and F defines C in what follows we shall often use them

interchangeably. It will also be convenient to assume that F is continuous and that its

associated pdf is also continuous. These requirements obviously exclude the case where

C is discrete and hence in what follows it is implicitly assumed that C/F can be taken

as relating to a continuous distribution. It is a straightforward matter to return to the

discrete case so we do not feel much is lost by this simplification of the exposition.10

Since, C and F are interchangeable we can, if we wish to emphasize the relationship,

write J(x, F ) rather than J(x,C). Note that this does not imply that the judgement

function is rank based, i.e. that J(x, F ) = g(F (x)). For example, we could have J(x, F ) =

x−min(F ) (where min(F ) denotes the minimum value of F/C). It should be clear that

this is not a rank-based formulation (recall that J – and hence g in the rank-based model

– should be defined independent of the context set).

We will limit our attention here to ‘pure contextual’ judgement functions.11 We may

also assume that the outcome x is ‘good’ in the sense that more of it is preferred:

Assumption 8. If the context set is fixed then a larger outcome is judged as greater than

x > x′ =⇒ J(x,C) > J(x′, C)

Our next restriction relates changes in the context to judgement of a given outcome.

Specifically we assume that, fixing an outcome, if all others outcomes ‘improve’ the judge-

ment of that outcome declines, formally:

Assumption 9. If C,C ′ are two contexts both including a given outcome xi with F, F ′

their associated distribution functions then using ≤ to denote stochastic dominance for

10Of course, allowing for masses of probability and hence for F to be quasi-continuous we could include
the discrete case within the continuous one. However, as we wish to ensure that F is continuous and its
differential always exists this is not possible.
11When we wish to return to the more general contextual case, as we shall below, it will always be presented
in a separable form. Hence we lose nothing by examining the ‘pure contextual’ case here.
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distributions (i.e. F ′ ≤ F iff F ′(x) ≥ F (x)∀x):

F ≥ F ′ =⇒ J(xi, C) ≤ J(xi, C
′)

Note that it is tempting to reduce this condition to the weaker one that a change in the

context which reduces relative position (rank) negatively affects the judgement:

Assumption 10. If C,C ′ are two contexts both including x with F, F ′ their associated

distribution functions then:

F (x) > F ′(x) =⇒ J(x,C) > J(x,C ′)

However, while this restriction would be satisfied by rank-based models, as we shall

see below, there are obvious examples of contextual models where this condition is not

satisfied – at least for some changes in C/F . This example demonstrates how limited

we are in finding simple but general conditions with which to restrict the form of the

judgement function. Thus, rather than to continue to search for general restrictions our

next step will be to consider example models in in which the judgement function is limited

in very specific ways.

5. Contextual Judgement Models: Examples

5.1. Sufficient Statistics. Before proceeding to the exposition of the particular models

we point out a basic commonality of the main contextual models discussed in detail below.

This commonality is that all of them restrict the judgement function to a basic set of

‘sufficient statistics’ of the context set, C/F . The main ‘statistics’ used are:

• The mean of the context set: x̄ = µ = µ(F ).

• The standard deviation of the context set: σ = σ(F ).

• Higher order moments, in particular the skewness: σ3 = σ3(F ).

• The maximum value: xmax = M = max(F ).

• The minimum value: xmin = m = min(F ).

• The range: r = M −m.

• The rank of an outcome x: R(x) = F (x).12

• (Temporal case) The last (most recent) outcome: xT .

12It is important to distinguish between F itself and the rank function
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Note that total/average judgement will be an averaging of the full context set. Hence,

it will usually have a simpler functional form than the original judgement function. For

example, in the case of range-frequency theory the total judgement is simply a linear

function of skewness – something not true of the underlying judgement function.

Recall, that we are focusing on judgement functions which are ‘pure’, that is unaltered

under translations by a constant: J(x + k,C + k) = J(x,C). This suggests that the

judgement function must be a function only of statistics which are themselves ‘linear’

(NB: this restriction clearly need not apply to average judgement). In particular, this

excludes judgement functions based (directly) on context set moments of higher order

than the mean.

Lastly, note that for many standard continuous distributions, for example the normal,

statistics such as the maximum and minimum will be infinite. However, we should re-

member that a continuous distribution is being used simply as an approximation of some

underlying finite set. Thus, it would be natural to truncate the support of the distribution

at some point where the loss in ‘probability’ was suitably low.

5.2. Adaptive and Target-Based Theories. In an adaptive or target-based theory

a given outcome is compared to some summary statistic of its context set – usually its

average. In adaptation judgement is still increasing in outcome but is declining in the

reference level.13 In target-based theories the aim is to be as close to the reference level

as possible.

In the terminology used here classic adaptation corresponds to a judgement function of

the form:

J(x,C) = f(x, x̄)

With the function f satisfying fx > 0 (subscripts indicating partial differential) and fx̄ < 0.

It is obviously a straightforward modification to allow other types of reference value,

replacing x̄ with a more general statistic. In particular, it, as is often the case, the

context set is temporal (for example a sequence of outcomes, such as income, for the

same individual) one might wish to weight outcomes, with the more recent having more

prominence in the summary statistic.

13“The affective value of the experiential correlate of a stimulus varies conversely with the sum of the
affective values of those experiences preceding this correlate which constitute with it a unitary temporal
group” Paris et al. (1983).
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Target-based theories differ from adaptation only in the nature of the f function. If s

is the reference statistic then fx > 0 for x < s and fx < 0 for x > s. This implies the

‘judgement’ is increasing as one approaches the reference level.

As such target-based theories have a natural affinity with models with models of confor-

mity. Concrete examples where target-based models may play a role include evaluation of

one’s weight (Oswald and Powdthavee, 2007) and one’s level of smoking (Christakis and

Fowler, 2008).

We would point out though that these types of example do raise questions about what

judgement represents. In particular ‘judgement’ can either represent some form of hedonic

‘payoff’ (be it utility, health or otherwise) or a ‘judgement’ in a traditional sense of an

evaluation of some fact about the world (what the optimum weight is). In particular, it

is unclear whether others becoming, say, thinner makes me feel different about my own

weight per se or shifts my views what the healthy weight actually is (and beyond this

I don’t care at all what others weigh). We could label these two approaches as ‘utility’

focused and ‘signalling’ focused. It is important to distinguish them because they have

very different policy implications – for example, suppose one were considering the impact

of the provision of information about ‘healthy’ eating and weight levels, then in a utility-

focused framework one would expect very little impact while in the signalling case one

would expect a larger one.

5.3. Rank Theory. As the name suggests in these models the only ‘statistic’ used in

assessing an outcome is rank: R(x) = F (x), that is the judgement function is:

J(x,C) = g(F (x))

‘Rank’ models often appear under the term ‘races’ – whether for status or other out-

comes (e.g. a patent). In almost all cases g is taken to be linear though this need not

always be the case – for example in the case of an all-or-nothing patent race (discussed

above) g is a step function which is 0 up to 1 (all ‘runners-up’) and V at 1 (the winner).

One of the key attributes of race models is that total/average judgement is invariant to the

context. To see this let G be the integral of the function g then total/average ‘judgement’:

J(C) = J(F ) =
∫
J(x, F )dF (x) =

∫
g(F (x))dF (x) = G(F (xmax))−G(F (xmin) = G(1)−G(0)
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Thus, the total judgement depends only on g and not on F (in the standard case where

status is rank, i.e. g(x) = x, J(x,C) = F (x), then J(C) = 0.5).

5.4. Range-Frequency Theory (Range-Rank Theory). The following is based on

Parducci (1995) (78 ff.) and Paris et al. (1983). Range-frequency theory combines a pure

rank evaluation (the frequency part) with a ‘spatial’ or ‘range’ evaluation based on the

location of an outcome relative to the extremes of the distribution.

Formally, it derives from the following two principles, that, assignment of a set of

‘stimuli’ to categories is done so as to:

Principle 1 (Equal Range): divide the outcome range into sub-categories of equal

range.

Principle 2 (Equal Frequency): ensure there are an equal number of outcomes

in each category (this equates to ranking them).

Range-frequency theory combines these together. Formally, the end ‘Judgement’ (J):

J = wR+ (1− w)F

where R and F are the judgements from Range and Frequency principles respectively.14

Using the notation from above, the range judgement can be expressed formally as (recall

r = xmax − xmin is the range):

Ri = Range(xi) =
xi − xmin

xmax − xmin
=
xi − xmin

r

While the frequency judgement is simply the rank:15

Fi = Frequency(xi) = F (xi)

Combining these together the judgement of an outcome x is given by:

J(xi, C/F ) = w(
xi − xmin

r
) + (1− w)F (xi)

14According to Parducci (1995) experimental evidence in psychology suggests w ≈ 0.5.
15In the finite case the normalized rank of an outcome (with no repetitions) is given by ri−1

N−1
where ri is

the rank in the contextual set and there are N stimuli.



14 RUFUS POLLOCK UNIVERSITY OF CAMBRIDGE DECEMBER 9, 2008

Defining mid = xmax + xmin/2 as the midpoint of the range we now have that the

average/total judgement is: (for an explicit derivation see below).

J̄ = 0.5 + w
x̄−mid

r

This is essentially a measure of skewness (though negatively correlated with conventional

measures) varying between 0 and 1. Dropping the 0.5 this becomes a range between -0.5

and 0.5 and can be expressed as:

Average Judgement = w
Avg. Outcome−Midpoint of Range

Range

Intuitively, what does this mean? Consider two alternative sets of experience (A,B), say

the experience of two different jobs or periods of one’s life. Suppose that the day-to-day

experiences in both situations were almost entirely the same except that: in one set, say

A, there were a few really good experiences while in the other, B, there were a few really

bad ones. Let us assume that these ‘extreme’ experiences formed a small enough part of

the overall set that they had little effect on the average level and hence this average is the

same for both sets.16

Now, which set of experiences would be rated the better? Intuitively, we would expect

A to be rated the better. After all, it was the same as B in all ways except that it had a

few really good experiences while B had a few really terrible ones. However, according to

range-frequency this is completely the wrong way round: B will be preferred to A. Why?

Because under B you spent most of your time at a level much better than the worst (those

really bad experiences) and near your best (the average), while under A you spent most

of your time far below the best (those really good experiences) and near your worst (the

average). In terms of the formula, by construction the average was the same for both A

and B. However, under A, the midpoint was above the average (because of those really

good experiences) while under B the midpoint was below the average (because of those

really bad experiences). As a result A is rated as worse than B.

16Alternatively one could allow some small compensation in the levels of other experiences in each case to
ensure they both ended up at the average level.
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5.4.1. Explicit Derivation of Average Judgement Formula. Average frequency is given

by:17 ∫
F (x)dF (x) = 0.5(F 2(xmax)− F 2(xmin)) = 0.5

Average range is given by:18

∫
RidF (x) =

∫
x− xmin

r
=
x̄− xmin

r

Thus average judgement is:

J = wR+ (1− w)F

= w(
x̄− xmin

r
) + 0.5(1− w)

= 0.5 + w
x̄−mid

r
+ w(mid− xminr − 0.5)

= 0.5 + w
x̄−mid

r
+ w(

xmax − xmin

2r
− 0.5)

= 0.5 + w
x̄−mid

r
+ w(

r

2r
− 0.5)

= 0.5 + w
x̄−mid

r

6. Empirical Testability

With these various contextual models in front of us there are two major empirical

questions to ask: a) how can we test for evidence of contextual judgement b) how can we

distinguish one particular contextual model from another.

6.1. Evidence for Contextual Judgement. Let us rephrase the first question as: how

can we test for evidence that a judgement function is not ‘pure’ self? Put in this way the

answer appears obvious: include any statistic based on the context set and see whether

this ‘improves’ the fit with the data. In particular, one would regress Ui, the reported

17In the discrete case it is even simpler:

1

N

NX
i=1

Fi =
1

2N(N − 1)
(N(N + 1)− 2N) = 0.5

18In the discrete case this would be:

1

N

NX
i=1

Ri =
x̄− xmin

r



16 RUFUS POLLOCK UNIVERSITY OF CAMBRIDGE DECEMBER 9, 2008

judgement, on Xi, the outcome variable, and Si some context statistic:19

Ui = αXi + βSi + · · ·

A finding of β < 0 would then be taken as evidence that judgement was not ‘pure’

self and hence had some (‘pure’) contextual component.20 Observe also that we obviously

need Si to vary with i for otherwise no test is possible.

Of course, this basic test has problems, especially related to omitted variables. In

particular, if S is positively correlated with variables which negatively impact U then

β will be negatively biased. However, at least at first sight there do not seem obvious

candidates for such omitted variables. In particular, higher S implies that those ‘around

you’ (in your context set) have better outcomes, and one would expect higher outcomes for

others to be negatively correlated with any omitted variables that impact on judgement.

There is, though, one other issue of some significance. This arises from the fact that

a regression is a (crude) approximation to whatever the real judgement function is. If

Si is correlated in some systematic way with Xi then adding Si may be simply helping

to correct a misspecification in the regression (related to the pure-self component) rather

than picking up genuine contextual effects. To illustrate, let us consider a case where

judgement is in fact pure-self, J = g(x), but displays diminishing returns. Concretely,

U = g(X) = X − X2 – U is utility, X income say – and the context statistic Si is

the µ(Ci) the mean of some group related to each Xi – for example, their neighbours.

Assuming that the exact quadratic nature of U is unknown so the regression is still:

Ui = αXi + βSi + · · ·

Now, it should be clear that if Si is positively correlated with X2
i then β will be found to

be negative (more generally if it is negatively correlated with the omitted part of g(X)). A

positive correlation with X2
i isn’t immediately obvious since Si = µ(Ci) but it is possible

if the distribution of values within a context set varies with the average of the values in the

19Alternatively, rather than include Si independently we might use relative outcomes:

Ui = αXi + β
Xi

Si
+ · · ·

Of course if the regression were done in logs this would become linear again.
20One could peform the (weaker) test for β 6= 0. However assumption 9 above implies that β should be
negative.
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context set in a particular way. Specifically one requires that at low and high levels values

are positively skewed (i.e. most people are poorer than the average) while at intermediate

levels it is negatively skewed (most people are richer than the average). This will result in

the difference between x and µ covarying systematically with x (and hence µ as x changes

which results in a negative coefficient on µ in the regression.21

To summarize: the basic test for contextual effects involves adding a statistic based on

context to the regression – most commonly the context mean or the ratio of the outcome

to context mean. While this should be reasonably robust one needs to be careful both

regarding omitted variables and mis-specification of the underlying functional forms.

6.2. Distinguishing Contextual Models. Supposing then that we have done success-

fully established the presence of contextual effects. At this point we come to the second

question: how we can distinguish one contextual model from another.

To illustrate the difficulties consider the following example. As discussed above, Re-

delmeier and Kahneman (1996), based on evidence of the evaluation of a painful medical

procedure, suggest that evaluations of temporal outcomes may follow a ‘peak-end’ rule

(PE). However, at least based on the summaries of the data presented in the paper, it

appears the result could be fit equally well by assuming that evaluations were based on a

range-frequency average judgement (RF).22 Specifically, in the RF case J̄ ≈ x̄−mid
r , which

equates to a (negative) measure of skewness. Now, in many case a lower ‘end’ under ‘peak-

end’ was also correlated with a situation in which the pain was lower than its maximum

for longer (see e.g. Fig 1 in the paper). Noting that here we are dealing with pain and

thus higher levels of pain equate to lower x, this sort of pattern would result in a lower

average judgement under RF as well as under PE.23 Thus, it could be that patients are

basing their evaluations on a RF approach rather than a PE one.

21Intuitively a linear regression on a (negative) quadratic function produces a line which is too high at low
and high values and too low in the middle. With the skews as described µ − x will be be positive at low
and high values and negative and intermediate values. Thus, adding in µ will improve fit with a negative
coefficient on µ.
22It would obviously be interesting here to re-analyze the full original dataset.
23The possible conflation of PE and RF explanations is even more true of the follow-up paper, Redelmeier
et al. (2003). There the treatment was intentionally prolonged a little at a level of minimal pain. While
this would obviously reduce the ‘end’ pain value it also makes the outcome distribution more negatively
skewed (you now spend more time far above the worst).
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Is it possible then to distinguish the two cases? The answer is clearly yes. For example,

RF theory, contrary to PE, would suggest that:24

• Increasing the period of low pain would improve evaluations (more time time is

now spent in the high-end of the experience range).

• Holding all else constant, an increase in the peak level of pain would actually

improve evaluation (the distribution is even more skewed and the midpoint will

have dropped more than the mean hence J̄ will have increased under RF).

Furthermore, the direct empirical test is simple: rerun the original regression using the

range-frequency statistics (mean, midpoint) in place of (or in addition to) the peak-end

statistics (peak and end). This point holds more generally. Many of the models discussed

above predict that judgement (whether total or individual) should be based on a relatively

limited set of context statistics (which differ across the models). It should therefore be

feasible to compare the performance of different context statistics in a given dataset and

therefore obtain some indication of which models are better than others.

7. Happiness, Status and Inequality

Contextual theories led themselves naturally to analysing overall happiness in groups

since we make take the group as the context set in making judgements. Let us consider

then the following simple model:

There are N entities (individuals, households etc). Each entity i has a single ‘outcome’

variable, xi, which could be thought of as being income, consumption or the like. Where

useful the variable x shall stand for the vector of outcomes, or (almost) equivalently, a

continuous distribution representing outcomes.

Individual i has a contextual utility (or well-being) function, U , which is ‘separable’:

U = U(xi, x−i) = u(xi) + αj(xi, x−i)

Where u is standard utility function dependent only on own-outcome and displaying

diminishing returns. j is a ‘pure’ contextual judgement function which depends both on

24In both cases, we should note that the predictions hold only ‘up to a point’ for it is unlikely that patients
evaluations are purely contextual. In particular, it is likely that the total overall level of pain matters in
and of itself. In this case, increasing the level of pain, or the time for which it is experienced, has some
direct negative impact. While for small increases this effect may be dominated by a ‘pure’ contextual effect
for larger increases this is unlikely to be so.
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own-outcome and on the outcomes of others and which we often refer to as comparison

utility in order to distinguish from standard utility u.

Remark: Here, it is natural to interpret u as representing the benefit derived directly

from one’s own activities and resources, independent of comparison with others, while j

represents ‘status’, or more widely one’s satisfaction with one’s position and outcomes in

comparison with others.

For comparison utility it will be valuable to focus on a specific case derived from

our analysis above. In particular, take j as the judgement function arising from range-

frequency theory:

ji = j(xi, x−i) = wRi + (1− w)Fi

where R and F are the judgements from Range and Frequency principles respectively.

Our next step is to aggregate to get average well-being. We do this giving equal weight to

each individual outcome:

Ū =
1
N

N∑
i=1

ui + αji = ū+ αj̄

Where average standard utility is ū = Ex(u(x)) and average judgement is:

j̄ = Exj(x) = w
x̄− 0.5(xmax + xmin)

xmax − xmin

7.1. Simulation. At this point, our next step is to do some numerical experiments to flesh

out this theoretical model. For this purpose we consider applying the above analysis to

the case of the income distribution for a country. It is generally accepted that the income

distribution, at least for developed countries, can be well approximated by a log-normal

distribution (perhaps with a Pareto distribution for the tail).25

We start with the standard log-normal with parameter 1.0. There is no clear way

(without empirical data which is currently lacking) to calibrate the respective levels of

standard and comparison utility via α. Thus, our approach is set α equal to the mean of

the standard utility for the distribution under consideration (0.787 in this case). For the

standard utility function we take the frequently used natural log form: u(x) = ln(1 + x)

(the 1 is added simply for analytical convenience so that the distribution can start at 0

25See e.g. Souma, Physics of Personal Income, http://arxiv.org/abs/cond-mat/0202388.
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Figure 1. Total, standard and comparison utility for Log-Normal

rather than 1). Individual utility as a function of their income is then shown in Figure 1

(the graph is shown up to the top 1% point on the income distribution).

The form and interaction of the two different sources of ‘happiness’ or ‘well-being’ in

total utility can be clearly seen: both standard and comparison utility grow in a concave

fashion from their initial values though comparison utility flattens out more rapidly and

becomes approximately linear quite quickly.26. Because standard utility and comparison

utility both grow together total utility grows more sharply than either of them and hence

the marginal utility of extra income in terms of total utility will be higher than the marginal

utility of extra income in terms of standard or comparison utility.

This has an interesting implication if we consider for a moment the situation where

everyone gets a little bit better off (equally in amount). The judgement function for

comparison utility (in commmon with most) has the property that a constant linear shift

26Here, as is expected comparison utility starts out negative (and hence so does total utility). For those
who find this problematic it is worthwhile to recall that the utility functions are only defined up to a
constant and so it would be trivial to add a constant and make all value non-negative.
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in the ‘context set’ (here the incomes) has no effect on the average judgment. Thus the

benefit of a one unit increase in income for all in terms of total utility is simply the benefit

in terms of standard utility (as there is no effect on comparison utility).

Thus, at the societal level the marginal benefit of extra income (equally distributed) is

just that arising from standard utility. As just discussed this marginal benefit is below

the marginal benefit seen at the individual level (which equates to total utility). Thus,

when comparison utility is present in total utility individual incentives and societal-wide

incentives will diverge with individuals (in this model, though also more generally). This is

a concrete demonstration of how ‘status races’ and ‘keeping up with the Jones’ can result

in everything ‘running harder but staying in the same place’. Potentially this could be

inefficient and make for worse societal well-being since the expenditure of effort involves

real costs (be that in terms of people’s leisure time or the emission of carbon dioxide).27

Returning to our example, the graph above only shows utility as a function of income.

Our next step will be to plot the density function of utility – i.e. to ‘interact’ the standalone

function with the distribution of income. This can be seen in Figure 2 which shows the

utility density (i.e. utility times pdf) as a function of income. The integral under this

graph will then be average value for that utility (total, standard, comparison) over the

whole population.

As can be seen the results are quite striking. In particular while on the first figure

the regions in which total utility is above and below standard utility seem fairly even

matched. However, once the utility density is plotted it is clear that the bulk of the

population lies in the region where comparison utility is negative and hence total utility

is less than standard utility. This is born out by the figures for this distribution shown

in the table below (NB: these are unnormalized so only relative values, not absolute ones

have meaning). As can be seen average total utility is always below average standard

utility, often well below (average comparison utility is negative). Also interesting is to

consider what happens when the distribution gets more unequal (corresponding here to

a higher scale parameter). In the examples shown we have not controlled the mean and

27Caution is warranted here as it is possible that there may offsetting effects that make this ‘over-
expenditure’ of effort beneficial (for example a gap between the social and private value of whatever
is produced by this effort – be this from externalities or the standard gap between producer and total
surplus). Any overall welfare evaulation would need to take these effects into account along with any
incentives to over-exertion engendered by the ‘status-race’.
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Figure 2. PDF of utility over the total population

Scale Mean/SD (Income) Total Util Std. Util Comp. Util Ratio
1 1.6/2.1 0.65 0.78 -0.13 0.39

1.5 3.1/9.0 0.71 0.88 -0.18 0.22
2.0 7.4/54.1 0.79 1.0 -0.22 0.11

Table 1. Mean values for main parameters of interest for various lognor-
mal distributions (scale is the lognormal scaling parameter). Ratio is the
ratio of total utility to mean income.

hence an increase in scale increases both the mean and the dispersion (as measured by

the variance) of the distribution. The effects are dramatic. Increasing the scale parameter

from 1.0 to 1.5 increases the mean income by almost 2 (1.6 to 3.1) but total utility by

only 9%. Increasing the scale to 2.0 from 1.0 results in an approximately 400% increase

in the mean income but only increases average total utility by 17%.
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8. Dynamics, and the Real Effect of Races

One of the most natural applications of contextual models is to ‘dynamic’ situations in

which the outcome is not exogenously given but endogenously determined by the choices

of agents. For example, the very term ‘status race’ implies that agents exert effort in

‘racing’. Note that, as discussed in the previous section with (‘pure’) contextual effects we

immediately have the existence of an externality – the positional externality, arising from

the fact that a change in my outcome affects not just my evaluation (utility) but that of

others. From Assumption 9 (higher context outcomes negatively affect own judgement) it

follows that this externality is a negative one.

The immediate implication of this, one might think, is that too much effort will be

expended. That is, in any dynamic game in which agents make private choices about

effort, and the resulting outcomes are judged (partially) contextually, the equilibrium

level of effort will be too high.

This result is certainly true whenever there are no other externalities. However, in many

cases this is not so. To illustrate consider the classic example of a patent race. Two facts

are well known. First, when the private value of the innovation (the value of the patent)

equals the social value – so no additional ‘externalities’ – there is too much ‘racing’ by

firms – that is they spend too much on R&D from a societal perspective. This confirms

the basic point that with ‘positional externalities’ effort will be inefficiently high.

However, suppose also that the private value is less than the social value – as is, in fact,

likely. In this situation, at least if private value falls sufficiently below social value, effort is

likely to be inefficiently low, and the race, by increasing that effort is likely to move effort

levels closer to the optimum. Thus, in this second case, though individual firms will feel

the race makes them work too hard, from society’s point of view this is all to the good.

We would note here that this same point can also be made about the classic ‘status

races’ (see e.g. Frank (1985, 2005)). In the absence of any other effects the existence

of positional (e.g. conspicuous consumption) and non-positional (e.g. leisure) goods will

result in an inefficiently high use of the former and under-user of the latter. However,
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allowing any kind of positive externality from the effort expended on the positional goods

may change this substantially.28

Of course, the additional externality could be negative rather than positive in which

case the positional externality effect and its associated over-exertion of effort, are rein-

forced. For example, assuming carbon emissions are a negative externality, if positional

goods result in more carbon emissions than non-positional ones the negative effects of the

‘positional externality’ are increased by the negative effects of increased carbon output.
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